ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • torch.nn
    라이브러리/PyTorch 2022. 3. 7. 13:56

    torch.nn

    torch.nn enables ueres to quickly instantiate NN architectures by defining some of these high-level aspects as opposed to having to specify all the details manually.

     

    import math
    import torch
    
    # assume a 256-dimensional input and a 4-dimensional output for this 1-layer NN
    # hence, initialize a 256x4 dimensional matrix filled with random values
    weights = torch.randn(256, 4) / math.sqrt(256)
    # then ensure that the parameters of this NN are trainable
    weights.requires_grad_()
    # finally also add the bias for the 4-dimensional output, and make these trainable too
    bias = torch.zeros(4, requires_grad=True)
    
    
    
    ######################################################################
    # we can instead use torch.nn.Linear(256, 4) to represent the same thing
    ######################################################################

     

    torch.nn.functional

    within the torch.nn module, there is a submodule called torch.nn.functional. This submodel consists of all the functions within the torch.nn module whereas all the other submodules are classes

    Example

    import torch.nn.functional as F
    loss_func = F.cross_entropy
    loss = loss_func(model(x), y)

     

    '라이브러리 > PyTorch' 카테고리의 다른 글

    gc.collect, torch.cuda.empty_cache()  (0) 2022.04.25
    Tensor moduels  (0) 2022.03.07
    torch.utils.data  (0) 2022.03.07
    torch.optim  (0) 2022.03.07
    Exager execution  (0) 2022.03.07

    댓글

Designed by Tistory.