-
Model vs Estimator라이브러리/Tensorflow keras 2022. 1. 3. 17:01
Background
The Estimators API was added to Tensorflow in Release 1.1, and provides a high-level abstraction over lower-level Tensorflow core operations. It works with an Estimator instance, which is TensorFlow's high-level representation of a complete model.
Keras is similar to the Estimators API in that it abstracts deep learning model components such as layers, activation functions and optimizers, to make it easier for developers. It is a model-level library, and does not handle low-level operations, which is the job of tensor manipulation libraries, or backends. Keras supports three backends - Tensorflow, Theano and CNTK.
Keras was not part of Tensorflow until Release 1.4.0 (2 Nov 2017). Now, when you use tf.keras (or talk about 'Tensorflow Keras'), you are simply using the Keras interface with the Tensorflow backend to build and train your model.
So both the Estimator API and Keras API provides a high-level API over low-level core Tensorflow API, and you can use either to train your model. But in most cases, if you are working with Tensorflow, you'd want to use the Estimators API for the reasons listed below.
Distribution
You can conduct distributed training across multiple servers with the Estimators API, but not with Keras API.
From the Tensorflow Keras Guide, it says that:
The Estimators API is used for training models for distributed environments.
And from the Tensorflow Estimators Guide, it says that:
You can run Estimator-based models on a local host or on a distributed multi-server environment without changing your model. Furthermore, you can run Estimator-based models on CPUs, GPUs, or TPUs without recoding your model.
Pre-made Estimator
Whilst Keras provides abstractions that makes building your models easier, you still have to write code to build your model. With Estimators, Tensorflow provides Pre-made Estimators, which are models which you can use straight away, simply by plugging in the hyperparameters.
Pre-made Estimators are similar to how you'd work with scikit-learn. For example, the tf.estimator.LinearRegressor from Tensorflow is similar to the sklearn.linear_model.LinearRegression from scikit-learn.
Integration with Other Tensorflow Tools
Tensorflow provides a vistualzation tool called TensorBoard that helps you visualize your graph and statistics. By using an Estimator, you can easily save summaries to be visualized with Tensorboard.
Converting Keras Model to Estimator
To migrate a Keras model to an Estimator, use the tf.keras.estimator.model_to_estimator method.
코드 예시
import os import time import tensorflow as tf import numpy as np LABEL_DIMENSIONS = 10 (X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data() TRIANING_SIZE = len(X_train) TEST_SIZE = len(X_test) X_train = X_train.astype(np.float32) / 255. X_test = X_test.astype(np.float32) / 255. X_train = np.expand_dims(X_train, axis=-1) X_test = np.expand_dims(X_test, axis=-1) y_train = tf.keras.utils.to_categorical(y_train, LABEL_DIMENSIONS) y_test = tf.keras.utils.to_categorical(y_test, LABEL_DIMENSIONS) print(X_train.shape) inputs = tf.keras.Input(shape=(28,28,1)) x = tf.keras.layers.Conv2D(filters=32, kernel_size=(3,3), activation='relu')(inputs) x = tf.keras.layers.MaxPooling2D(pool_size=(2,2), strides=2)(x) x = tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation='relu')(x) x = tf.keras.layers.MaxPooling2D(pool_size=(2,2), strides=2)(x) x = tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation='relu')(x) x = tf.keras.layers.Flatten()(x) x = tf.keras.layers.Dense(64, activation='relu')(x) predictions = tf.keras.layers.Dense(LABEL_DIMENSIONS, activation='softmax')(x) model = tf.keras.Model(inputs=inputs, outputs=predictions) model.summary() optimizer = tf.keras.optimizers.SGD() model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) strategy = None # strategy = tf.distribute.MirroredStrategy() config = tf.estimator.RunConfig(train_distribute=strategy) estimator = tf.keras.estimator.model_to_estimator(model, config=config) def input_fn(images, labels, epochs, batch_size): dataset = tf.data.Dataset.from_tensor_slices((images, labels)) SHUFFLE_SIZE = 5000 dataset = dataset.shuffle(SHUFFLE_SIZE).repeat(epochs).batch(batch_size) dataset = dataset.prefetch(None) return dataset BATCH_SIZE = 512 EPOCHS = 50 estimator_train_result = estimator.train(input_fn=lambda:input_fn(X_train, y_train, epochs=EPOCHS, batch_size=BATCH_SIZE)) """ INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Warm-starting with WarmStartSettings: WarmStartSettings(ckpt_to_initialize_from='/tmp/tmp1pvrd1zf/keras/keras_model.ckpt', vars_to_warm_start='.*', var_name_to_vocab_info={}, var_name_to_prev_var_name={}) INFO:tensorflow:Warm-starting from: /tmp/tmp1pvrd1zf/keras/keras_model.ckpt INFO:tensorflow:Warm-starting variables only in TRAINABLE_VARIABLES. INFO:tensorflow:Warm-started 10 variables. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmp1pvrd1zf/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:loss = 2.3034368, step = 0 INFO:tensorflow:global_step/sec: 178.284 INFO:tensorflow:loss = 2.239314, step = 100 (0.562 sec) INFO:tensorflow:global_step/sec: 191.352 INFO:tensorflow:loss = 2.0096796, step = 200 (0.523 sec) INFO:tensorflow:global_step/sec: 194.9 INFO:tensorflow:loss = 0.97391784, step = 300 (0.513 sec) INFO:tensorflow:global_step/sec: 192.675 INFO:tensorflow:loss = 0.54486215, step = 400 (0.519 sec) INFO:tensorflow:global_step/sec: 184.113 INFO:tensorflow:loss = 0.37952545, step = 500 (0.544 sec) INFO:tensorflow:global_step/sec: 184.681 INFO:tensorflow:loss = 0.32539126, step = 600 (0.543 sec) INFO:tensorflow:global_step/sec: 178.475 INFO:tensorflow:loss = 0.27206874, step = 700 (0.559 sec) INFO:tensorflow:global_step/sec: 183.713 INFO:tensorflow:loss = 0.2957946, step = 800 (0.544 sec) INFO:tensorflow:global_step/sec: 179.175 INFO:tensorflow:loss = 0.2544106, step = 900 (0.558 sec) INFO:tensorflow:global_step/sec: 183.919 INFO:tensorflow:loss = 0.18423726, step = 1000 (0.544 sec) INFO:tensorflow:global_step/sec: 179.745 INFO:tensorflow:loss = 0.2556684, step = 1100 (0.556 sec) INFO:tensorflow:global_step/sec: 189.261 INFO:tensorflow:loss = 0.18466713, step = 1200 (0.529 sec) INFO:tensorflow:global_step/sec: 184.846 INFO:tensorflow:loss = 0.23052645, step = 1300 (0.540 sec) INFO:tensorflow:global_step/sec: 183.611 INFO:tensorflow:loss = 0.14340779, step = 1400 (0.545 sec) INFO:tensorflow:global_step/sec: 184.251 INFO:tensorflow:loss = 0.17525977, step = 1500 (0.542 sec) INFO:tensorflow:global_step/sec: 180.979 INFO:tensorflow:loss = 0.1672284, step = 1600 (0.553 sec) INFO:tensorflow:global_step/sec: 181.072 INFO:tensorflow:loss = 0.15280569, step = 1700 (0.552 sec) INFO:tensorflow:global_step/sec: 182.724 INFO:tensorflow:loss = 0.18575056, step = 1800 (0.548 sec) INFO:tensorflow:global_step/sec: 188.865 INFO:tensorflow:loss = 0.15243016, step = 1900 (0.529 sec) INFO:tensorflow:global_step/sec: 179.765 INFO:tensorflow:loss = 0.20070502, step = 2000 (0.557 sec) INFO:tensorflow:global_step/sec: 179.259 INFO:tensorflow:loss = 0.09927731, step = 2100 (0.557 sec) INFO:tensorflow:global_step/sec: 179.88 INFO:tensorflow:loss = 0.10036966, step = 2200 (0.556 sec) INFO:tensorflow:global_step/sec: 178.489 INFO:tensorflow:loss = 0.1511803, step = 2300 (0.560 sec) INFO:tensorflow:global_step/sec: 178.423 INFO:tensorflow:loss = 0.13978498, step = 2400 (0.561 sec) INFO:tensorflow:global_step/sec: 179.009 INFO:tensorflow:loss = 0.09983465, step = 2500 (0.559 sec) INFO:tensorflow:global_step/sec: 178.036 INFO:tensorflow:loss = 0.12313335, step = 2600 (0.562 sec) INFO:tensorflow:global_step/sec: 177.117 INFO:tensorflow:loss = 0.09517769, step = 2700 (0.564 sec) INFO:tensorflow:global_step/sec: 175.814 INFO:tensorflow:loss = 0.1088136, step = 2800 (0.568 sec) INFO:tensorflow:global_step/sec: 179.151 INFO:tensorflow:loss = 0.11427465, step = 2900 (0.559 sec) INFO:tensorflow:global_step/sec: 176.516 INFO:tensorflow:loss = 0.1161906, step = 3000 (0.566 sec) INFO:tensorflow:global_step/sec: 185.02 INFO:tensorflow:loss = 0.12519513, step = 3100 (0.541 sec) INFO:tensorflow:global_step/sec: 179.65 INFO:tensorflow:loss = 0.123464614, step = 3200 (0.557 sec) INFO:tensorflow:global_step/sec: 178.158 INFO:tensorflow:loss = 0.08784182, step = 3300 (0.561 sec) INFO:tensorflow:global_step/sec: 180.627 INFO:tensorflow:loss = 0.054795217, step = 3400 (0.555 sec) INFO:tensorflow:global_step/sec: 177.08 INFO:tensorflow:loss = 0.07353416, step = 3500 (0.564 sec) INFO:tensorflow:global_step/sec: 179.721 INFO:tensorflow:loss = 0.09652375, step = 3600 (0.556 sec) INFO:tensorflow:global_step/sec: 178.426 INFO:tensorflow:loss = 0.10172101, step = 3700 (0.560 sec) INFO:tensorflow:global_step/sec: 179.012 INFO:tensorflow:loss = 0.08302882, step = 3800 (0.559 sec) INFO:tensorflow:global_step/sec: 178.118 INFO:tensorflow:loss = 0.09580868, step = 3900 (0.561 sec) INFO:tensorflow:global_step/sec: 178.444 INFO:tensorflow:loss = 0.0684932, step = 4000 (0.560 sec) INFO:tensorflow:global_step/sec: 176.784 INFO:tensorflow:loss = 0.081661016, step = 4100 (0.566 sec) INFO:tensorflow:global_step/sec: 181.015 INFO:tensorflow:loss = 0.07420032, step = 4200 (0.552 sec) INFO:tensorflow:global_step/sec: 180.23 INFO:tensorflow:loss = 0.06586884, step = 4300 (0.555 sec) INFO:tensorflow:global_step/sec: 180.78 INFO:tensorflow:loss = 0.08294612, step = 4400 (0.553 sec) INFO:tensorflow:global_step/sec: 180.108 INFO:tensorflow:loss = 0.09678737, step = 4500 (0.556 sec) INFO:tensorflow:global_step/sec: 180.694 INFO:tensorflow:loss = 0.07421845, step = 4600 (0.553 sec) INFO:tensorflow:global_step/sec: 180.526 INFO:tensorflow:loss = 0.06995378, step = 4700 (0.553 sec) INFO:tensorflow:global_step/sec: 179.617 INFO:tensorflow:loss = 0.082376555, step = 4800 (0.557 sec) INFO:tensorflow:global_step/sec: 180.769 INFO:tensorflow:loss = 0.08412885, step = 4900 (0.553 sec) INFO:tensorflow:global_step/sec: 181.961 INFO:tensorflow:loss = 0.06900973, step = 5000 (0.550 sec) INFO:tensorflow:global_step/sec: 179.384 INFO:tensorflow:loss = 0.06294246, step = 5100 (0.557 sec) INFO:tensorflow:global_step/sec: 181.96 INFO:tensorflow:loss = 0.07214558, step = 5200 (0.550 sec) INFO:tensorflow:global_step/sec: 182.539 INFO:tensorflow:loss = 0.05346456, step = 5300 (0.548 sec) INFO:tensorflow:global_step/sec: 181.052 INFO:tensorflow:loss = 0.07074894, step = 5400 (0.553 sec) INFO:tensorflow:global_step/sec: 179.281 INFO:tensorflow:loss = 0.07418828, step = 5500 (0.558 sec) INFO:tensorflow:global_step/sec: 180.93 INFO:tensorflow:loss = 0.092001915, step = 5600 (0.553 sec) INFO:tensorflow:global_step/sec: 178.848 INFO:tensorflow:loss = 0.06587793, step = 5700 (0.559 sec) INFO:tensorflow:global_step/sec: 177.853 INFO:tensorflow:loss = 0.04739695, step = 5800 (0.562 sec) INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 5860... INFO:tensorflow:Saving checkpoints for 5860 into /tmp/tmp1pvrd1zf/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 5860... INFO:tensorflow:Loss for final step: 0.053352103. """ estimator.evaluate(lambda: input_fn(X_test, y_test, epochs=1, batch_size=BATCH_SIZE)) """ INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-01-03T08:03:44 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmp1pvrd1zf/model.ckpt-5860 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Inference Time : 0.30421s INFO:tensorflow:Finished evaluation at 2022-01-03-08:03:45 INFO:tensorflow:Saving dict for global step 5860: accuracy = 0.981, global_step = 5860, loss = 0.062440597 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 5860: /tmp/tmp1pvrd1zf/model.ckpt-5860 {'accuracy': 0.981, 'loss': 0.062440597, 'global_step': 5860} """
'라이브러리 > Tensorflow keras' 카테고리의 다른 글
TF Keras 학습 속도 줄이기 (30%) (0) 2022.04.26 tf.data, TFRecord (0) 2022.01.05